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Abstract  A measurement of the Thermal Diffusivity of a solid semi-transparent material 
from the range of ambient temperature to a high by the use of the Flash Method is 
investigated in the present paper. A semi-transparent layer, which emits, absorbs but does 
not scatter, is considered. The problem is supposed to be linear. A one-dimensional 
transient energy equation transfer by conduction and radiation for a finite medium is 
solved. The analytical solution is obtained by considering some mathematical 
approximations, using the Laplace Transform, and the kernel substitution technique. The 
experimental design presented in this work is an original technical concept, which enables a 
significant reduction of contact heat loss between the sample and its sample holder. It also 
eliminates heat loss between the sample and detector, and increases the speed and precision 
of experimental measurements. The experiments are done on different kinds of glass with 
different boundary conditions and different thicknesses. Heat losses on both the front face 
and rear face of the sample are taken into account. A very simple model based on the 
quadrupole method is used to theoretically determine the thermal diffusivity of the semi-
transparent material by taking into account both conduction and radiation. This model 
allows the use of very short resulting computation times, and clarifies the consideration of 
heat losses on the two faces of the sample. The theoretical results are found to be in 
agreement with the experimental results. 
 

1.  Introduction 
For many decades, the needs in science and technology have pushed many authors to 

develop new methods to determine thermal properties of materials with more accuracy. The 
most preferred of them is the flash method conceived for the first time by Parker [1]. The 
flash method is an impulse method for which, the front face of the sample is subjected with 
a short thermal impulse, and then, an analysis of the evolution of the temperature versus 
time (thermogram) on the rear face of the sample is done.  It was developed in order to 
eliminate the problems of thermal contact resistance between the specimen and its 
associated heat source, and to minimize the heat losses by making the measurements in a 
time short enough so that very little cooling could take place. Many experiments to improve 
the flash method have been developed [2-8].  Some of them are to determine thermal 
diffusivity by considering several points of the thermogram or its all  significant part, and 
by taking into account heat loss on the two or three faces of the sample [9-12]. A technique of 
partial temporal moment of the order 0 and –1 issued from the experimental thermogram 



and the model, which regroups the advantages of the above mentioned two techniques was 
developed [13]. 

The flash method has been extended to study thermal properties of semitransparent 
materials for various boundary conditions [14-15]. Several authors solved the problem of  
one-dimensional transient heat transfer by coupled conduction-radiation for a finite 
medium [16-21]. An experimental device, suitable for the transient measurement of the 
phonic diffusivity of semitransparent material in the range from 300 to 800 K, was 
produced [18]. The phonic diffusivity was directly extracted from the measured parameter in 
an identification process for opaque materials [22, 23,30]. A theoretical model of one-
dimensional transient combined heat transfer for different thermal responses with different 
experimental conditions was developed [19]. Simulations have shown that for conditions of 
small equivalent optical thickness, and in the case of reflecting walls, the flash method 
provides a direct measurement of the phonic diffusivity of glass in the same way as it does 
for opaque materials.   An exact analytical solution was found with a linear transfer 
assumption, using a kernel substitution technique [24]. This technique demonstrates that the 
Rosseland gray coefficient [25-27] has to be used in the gray absorbing model in order for 
non-gray behavior to be described correctly. The quadrupole representation of the problem 
[28, 12 - 13] was used in order to facilitate the resolution. 

The present work is concerned with the thermal diffusivity measurement of glass at   
high temperature by means of the flash method. Physical and theoretical models are first 
defined, and an original technical concept, which enables to minimize heat loss during the 
experiments, is presented. This new experimental device, not only eliminates the problems 
of thermal contact resistance between the specimen and its associated heat source, but also 
eliminates the thermal contact resistance between the specimen and the detector. The 
thermal contact between the sample and sample holder is reduced to a minimum. 
Theoretical results show the effect of the absorption coefficient and the thickness of the 
sample on heat transfer in the semi-transparent medium. Experimental results are presented. 
 

2.  Physical and Theoretical Models 
2.1  Physical model 

The problem under consideration refers to the hypotheses [16, 29, 31-33]: (1) finite 
medium; (2) emitting, absorbing but non-scattering medium; (3) gray medium (both the 
absorption coefficient and the refractive index are independent of wavelength); (4) opaque 
boundaries with diffuse gray emissivities and reflectivities; (5) the medium is initially at 
uniform temperature T0 and receives a quantity of heat Q at time t>0; (6) temperature from 
the room temperature to the sample’s melting temperature; (7) heat losses on the sample 
surfaces are considered. 
2.2  Theoretical Model 

A theoretical model of one-dimensional transient combined conduction-radiation heat 
transfer is considered. The transient behavior of temperature within a homogenous, 
isotropic slab can be found by solving the following energy equation [16-17]: 
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where, ( , )c phq k T z t z= − ∂ ∂  is the purely conductive heat flux, and qr is the purely 

radiative heat flux.  
The following dimensionless variables are introduced for the best calculation:  
- Dimensionless temperature: 

( ) ( )0 0 / pT T T T Q C eθ ρ∗ ∗= − = −  

where 
adp TeCQ =)/( ρ  is the adiabatic temperature, Q is the energy density received by the 

layer, ρ is the density, Cp is the specific heat, e is the slab thickness, and T0 is the reference 
temperature. 

- Dimensionless time variable: 
2t at e∗ =  

It is also called the Fourier number based on the phonic diffusivity a of the semi-
transparent layer. 

- Dimensionless space variable:  

ezz /=∗ . 

- Optical thickness: 

eχτ =0  

where χ is the absorption coefficient 
- Conduction-to-radiation parameter: 

_
2 3

04pl phN k n Tχ σ= .  

It is also called Planck number or Stark number. 
- Dimensionless net radiative heat flux: 

_
2 4

04r rq q n Tσ∗ = . 

- Dimensionless intensity (or incident radiation):  
_

2 4
04I I n Tπ σ∗ = . 

Applying the above dimensionless variables, Eq. (1) becomes: 
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Assuming no spectral properties, the dimensionless radiative heat flux can be expressed as 
[18-21]: 
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In Eq. (3), the dimensionless intensities given by the radiative limits under consideration 

)0(+I  and )1(−I  are defined as follows: 
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where εi and ρi represent gray diffuse emissivity and gray diffuse reflectivity respectively. 
In the case of opaque boundaries, we have εi + ρi = 1. 

The semi-transparent material is always considered in a perturbed state where the 
deviations from a reference state of radiative equilibrium are small. Thus, temperature T at 
any location in the semi-transparent material sample will be equal to T0+θ  where T0 is the 
reference temperature and θ  a small perturbation. According to the dimensionless variables 
introduced above, the assumption 
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is valid.  The kernel substitution technique [5] shows that, in Eq. (3), )(2 zE ≈ )exp( bzm − , 

and  )(3 zE ≈ )exp()./( bzbm − , with m= 3/4 and b = 3/2 respectively.  

Applying this kernel substitution and the assumption given above, the radiative heat 
flux Eq. (3) is expressed as: 
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Here the variable 2/3 0ττ =  results from the kernel substitution and is introduced for 

convenience. For the same reason, Npl becomes 2/3 plNN = . When differentiating the Eq. 

(2) twice, one has: 
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The substitution of the second order derivative of the radiative heat flux Eq. (5) in Eq. (6) 
yields: 
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At this point, the expression */ zq r ∂∂  appears along with partial derivatives of θ , as in 

equation (2). Thus introducing Eq. (2) in Eq. (7) and applying Laplace transform in time. 
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We have the following ordinary differential equation in the Laplace domain: 
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Eq. (9) is solved by the use of the quadrupole method [21]. A linear relationship between 

Laplace transformations of temperature-heat flux, )0(
_

θ and )0(
_

φ  at the front side of the 

sample, and )1(
_

θ and )1(
_

φ  at the rear face is provided by a transfer matrix of the 

quadrupole. Considering equal heat transfer coefficients, h on both sides of the sample, the 
problem is expressed in the following matrix:  
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where H = he/kph is the Biot number. The Laplace transformation of the temperature at the 
rear face of the sample is: 

[ ]
_ _

(1) (0) ( )H A D BH Cθ φ= + + +       (11)  

 



3.  Simulation results and discussion 
The rear-face thermal behavior on three different kinds of sample glass, black 

boundaries and reflecting boundaries, are simulated at a high temperature (900 ). The 

three considered kinds of glass have Rosseland absorption coefficients χR1=49.5 m-1, 
χR2=250 m-1, and χR3=2500 m-1 respectively. The theoretical results of coupled heat transfer 
for three different kinds of sample glasses with black boundary conditions (Figs.1 and 2), 
and reflecting boundary conditions (Figs.3 and 4) are illustrated. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.1. Rear face thermal responses of  three          Fig.2. Rear face thermal responses of 
          different samples with black boundaries                  three different samples with black 
                       (e= 0.002m)                                                 boundaries (e= 0.006m) 
 

For all figures (Figs.1 – 4), the curves 1 and 2 are the thermal response on the rear face 
of the first kind of sample glass (χR1=49.5 m-1); the curves 4 and 5 are the thermal response 
on the rear face of the second kind of glass (χR2=250 m-1); the curves 6 and 7 are the 
thermal responses on the rear face of the third kind of glass (χR3=2500 m-1), and curve 3 
represents the rear face thermogram for the case of pure conduction.  

The comparison made for Figs. 1 and 2 shows that for the case of black boundaries, 
the thermal response differs largely from the classical thermogram (case of pure 
conduction). As it has been reported in [19], the initial peak, which appears at a very short 
time is caused by a direct energy exchange between the two black boundaries through the 
medium of small radiative resistance. The rear face behaves as if it is the perturbed surface. 
The temperature decreases, passes through a minimum and increases under the progressive 
influence of a heat flux connected to the coupled mechanism of both conductive and 
radiative transfer.   On both Fig.1 and 2, the radiative effects are important for the sample 
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glass with a small absorption coefficient (curves 1 and 2) than for the sample with high 
absorption coefficient (curves 4 and 5). Consider now Fig.1 (curves 1, 2, curves 4, 5 and 
curve 6,7) and Fig.2 (curves 1, 2, curves 4, 5 and curves 6, 7). It is clear that, for three 
sample glasses of the same kind, but with different thicknesses, the radiative effects and 
heat losses are more significant for the sample with the greater thickness.              
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3. Rear face thermal responses of the           Fig.4. Rear face thermal responses of  the 
           three different kinds of samples                                three different kinds of  samples  
           with reflecting boundaries                                    with reflecting boundaries    
               (e=0.002m)                                                                   (e=0.006m) 
  

In Figs.3 and 4, the case of reflecting boundary conditions for two above kinds of 
glass is studied.  The thermograms obtained here behave as a classical thermogram. 
Consider the same comparisons of different curves with curve 3 (case of pure conduction) 
as we did for the case of black boundaries in order to identify the radiative effects on each 
measurement for every considered sample.  One can conclude that, for the case of reflecting 
boundaries an increase of the sample thickness increases the radiative effects and heat loss 
as it is for the case of black walls.  But here we see that for glasses with great thickness the 
radiative effects are not significant for sample glasses which have very high or very small 
absorption coefficients (curves 1, 2, 4, 5, 6 and 7 of Fig.4). We can also say that, if the 
absorption coefficient is very small (curve 1 of Fig.3), the radiation can be neglected.   
 
4. Experimental measurement 

The experimental setup is illustrated in Fig.5. The sample is placed into the furnace  in 
a determined position so that the heat flux from laser source may be pointed 
perpendicularly to its front face. The duration of the heat impulse is around 1ms. With a 
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pump, a vacuum is created in the furnace in order to avoid heat losses by convection at high 
temperatures and to allow the setting of the sample at a stable temperature. The data of 
temperature rise at the rear face of the sample, and the temperature in the furnace are 
collected by means of the thermal couples Chrome/Aluminum thermal couple and led to the 
monitor for their analysis. One has to mention that, during the experiment, the temperature 
of the laser source is permanently moderated by cool water.  
 
                                  Cooling water exit                       Electric furnace 
                                   Cooling water entrance                Sample 
                                        Laser source                           Sample holder 
                                                                                        
                                                                                              Window made of glass 
                                                                                              
                            Tools control                                                                   Thermal couples 
                                                                                   
                                                                                
  
 

                                                                 Vacuum              Monitor         
                                                                       Pump 
 

 

 

 

                                                    Fig. 5 Experimental setup 
 

The simple method used to determine the thermal diffusivity of solid materials is 
Parker’s method. But this method is efficient only for the determination of thermal 
diffusivity of opaque material, and in the case where the heat losses are not considered.   

For the present work, where the study is led on semi-transparent material at high 
temperature, one has to take into account both conduction and radiation. Heat losses are 
also considered. The measurements are done on the silicate glass with reflecting 
boundaries. The measurement results are shown on the Figs.6 and 7. 
 
5. Conclusion 

A new experimental technique design for the measurement of the thermal properties of 
semi-transparent materials by the Flash Method at high temperature was conceived.   The 
advantages of this technique over the others already used by many authors is that it can 
reduce the heat loss to a minimum temperature. A theoretical model of a 1D transient heat 
transfer has been developed.  



The influence of the thickness and boundary conditions for different kind of glasses 
were discussed. It was shown that, for the case of a black wall, the radiative effects are 
important for the glass with a small absorption coefficient, and they increase with the 
thickness of the sample. For the case of reflecting boundaries, the radiative effects are more 
important for the sample with a high absorption coefficient and they increase with thickness. 
 
 
 
 
 
 

  
 
 
 
 
 
 
  Fig.7: Thermal diffusivity of silicate glass                Fig.8. Phonic Difusivity of silicate glass 
      as function of temperature (e = 2mm)                             as function of temperature(e=2mm) 
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